

Available online at www.sciencedirect.com

Journal of Organometallic Chemistry 692 (2007) 4933-4942

www.elsevier.com/locate/jorganchem

Tuning the sulfur-heterometal interaction in organolead(IV) complexes of $[Pt_2(\mu-S)_2(PPh_3)_4]$

Kristina Pham^a, William Henderson^{a,*}, Brian K. Nicholson^a, T.S. Andy Hor^{b,*}

^a Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand ^b Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

> Received 15 May 2007: accepted 11 July 2007 Available online 14 July 2007

Abstract

Reactions of [Pt₂(µ-S)₂(PPh₃)₄] with Ph₃PbCl, Ph₂PbI₂, Ph₂PbBr₂ and Me₃PbOAc result in the formation of bright yellow to orange solutions containing the cations $[Pt_2(\mu-S)_2(PPh_3)_4PbR_3]^+$ (R₃ = Ph₃, Ph₂I, Ph₂Br, Me₃) isolated as PF₆⁻ or BPh₄⁻ salts. In the case of the Me₃Pb and Et₃Pb systems, a prolonged reaction time results in formation of the alkylated species $[Pt_2(\mu-S)(\mu-SR)(PPh_3)_4]^+$ (R = Me, Et). X-ray structure determinations on $[Pt_2(u-S)_2(PPh_3)_4PbMe_3]PF_6$ and $[Pt_2(u-S)_2(PPh_3)_4PbPh_3]PF_6$ have been carried out, revealing different coordination modes. In the Me₃Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph₂PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the $\{Pt_2S_2\}$ metalloligand core can be tuned by variation of the heteroatom substituents. The species $[Pt_2(\mu-S)_2(PPh_3)_4PbR_3]^+$ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh₃ in all cases; for R = Ph, loss of PbPh₂ occurs, yielding $[Pt_2(\mu-S)_2(PPh_3)_3Ph]^+$, while for R = Me, reductive elimination of ethane gives $[Pt_2(\mu-S)_2(PPh_3)_3PbMe]^+$, which is followed by loss of CH₄.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Platinum complexes; Lead complexes; Sulfide ligands; Crystal structures; Electrospray mass spectrometry

1. Introduction

In a series of recent papers we have been applying the technique of electrospray ionisation mass spectrometry (ESI MS) to probe the coordination chemistry of the metalloligand $[Pt_2(\mu-S)_2(PPh_3)_4]$ [1–4]. This methodology allows the rapid screening of reaction systems on a small scale, with promising systems then being investigated on a more traditional macroscopic scale for full characterisation [5]. Because the ESI technique involves soft ionisation, solution ions are transferred in an essentially intact state into the gas phase, so such an MS-directed synthetic methodology gives a good picture of solution speciation.

Using this methodology we have previously investigated organo-tin(IV) adducts of $[Pt_2(\mu-S)_2(PPh_3)_4]$ [6] and of the

related selenide complex $[Pt_2(\mu-Se)_2(PPh_3)_4]$ [7], leading to the isolation and characterisation of a range of new Pt₂SnE₂ trimetallic aggregates. In this paper we report the extension of this methodology to adducts formed between $[Pt_2(\mu-S)_2(PPh_3)_4]$ and organolead(IV) compounds. To date, only adducts of (inorganic) lead(II) have been described; reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ and $Pb(NO_3)_2$ gave $[Pt_2(\mu-S)_2(PPh_3)_4Pb(NO_3)_2]$ which with NH_4PF_6 gave $[Pt_2(\mu-S)_2(PPh_3)_4Pb(NO_3)]PF_6$, with both complexes characterised by X-ray crystallography[8]. The related complex $[Pt_2(\mu-S)_2(dppf)_2]$ [dppf = 1,1'-bis(diphenylphosphino)ferrocene] forms a similar lead(II) adduct $[Pt_2(\mu-S)_2(dppf)_2Pb(NO_3)](NO_3)$ [9] and lead(II) adducts of $[Pt_2(\mu-S)_2(PPh_3)_4]$ have been examined theoretically [10].

2. Results

The reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with Ph₃PbCl in methanol rapidly led to the formation of a clear, bright yellow

Corresponding authors. Tel.: +64 7 838 4656; fax: +64 7 838 4219. E-mail addresses: w.henderson@waikato.ac.nz (W. Henderson), andy.hor@nus.edu.sg (T.S.A. Hor).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2007.07.010

solution which was shown by ESI MS to contain solely the triphenyllead(IV) adduct $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]^+$ (m/z)1941). From this solution, solid products 1a and 1b were readily isolable in good yields by addition of NH₄PF₆ or NaBPh₄, respectively. The complexes give satisfactory microanalytical data and are stable and soluble in polar solvents such as dichloromethane and chloroform. The cation could also be isolated as its $N(SO_2C_2F_5)_2^-$ salt 1c, as orange-yellow crystals; the presence of the anion in this derivative was confirmed by negative-ion ESI MS. The reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with 0.5 mol equivalents of hexaphenyldilead (Ph₃Pb-PbPh₃) also results in the formation of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]^+$. Using this route, complex 1a was isolated in 77% yield, and the product had identical ESI MS and ³¹P-{¹H} NMR spectroscopic properties to 1a prepared from Ph₃PbCl. The mechanism by which this reaction occurs is unknown, but Ph₃Pb-PbPh₃ has been well established as a source of Ph₃PbR compounds through Pb-Pb bond cleavage [11]. In contrast, no reaction was observed between $[Pt_2(\mu-S)_2(PPh_3)_4]$ and PbPh₄ in refluxing methanol.

The reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with Me₃PbOAc in methanol was more complex, and the products formed were dependent on the reaction time. A clear, bright yellow solution rapidly formed, and after a short reaction time (ca. 1 h), ESI MS showed the expected parent ion $[Pt_2(\mu S_{2}(PPh_{3})_{4}PbMe_{3}^{\dagger}$ (m/z 1755) as essentially the sole species >m/z 400. A low intensity ion was observed at m/z562, assigned to $[(Me_3Pb)_2OAc]^+$; this species has been observed previously in the ESI mass spectrum of Me₃Pb-OAc [5]. The trimethyllead adduct was isolated as its PF_6^- salt 2, by addition of excess NH_4PF_6 to the filtered reaction solution; satisfactory microanalytical data were obtained. The ¹H NMR spectrum of the complex shows the PbCH₃ groups as a singlet at δ 1.16, showing coupling to ²⁰⁷Pb of 61.5 Hz. This value can be compared to 68 and 63 Hz for Me₃PbBr and Me₃PbI, respectively [12]. The ³¹P- $\{^{1}H\}$ NMR spectrum showed a single resonance at δ 23.2 with coupling to ¹⁹⁵Pt of 2944 Hz.

When the reaction between $[Pt_2(\mu-S)_2(PPh_3)_4]$ and Me₃PbOAc was monitored by ESI MS, [Pt₂(µ-S)₂(PPh₃)₄- $PbMe_3^{\dagger}$ was observed to form rapidly, followed by a much slower conversion to a species at m/z 1518, which was assigned to the mono-methylated species [Pt₂(μ -S)- $(\mu$ -SMe)(PPh₃)₄]⁺, confirmed by examination of the high resolution isotope pattern. This species is well-known from early studies on $[Pt_2(\mu-S)_2(PPh_3)_4]$; it has been synthesised from the reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with MeI in diethyl ether, [13,14], and has been generated in situ on a (MSmonitored) micro-scale by reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with a range of methylating agents, such as MeI, MeBr, Me₂SO₄, and MeP(O)(OMe)₂ [15]. After 9 days, ESI MS of the reaction mixture showed predominantly $[Pt_2(\mu-S) (\mu$ -SMe)(PPh₃)₄]⁺, which was isolated as a crude hexafluorophosphate salt by addition of NH₄PF₆ to the filtered reaction mixture. The ³¹P-{¹H} NMR spectrum of this product showed two components. The first, $[Pt_2(\mu-S)-$

 $(\mu$ -SMe)(PPh₃)₄]⁺, was easily identified by comparison of its spectral parameters with an authentic sample of $[Pt_2(u-S)(u-SMe)(PPh_3)_4]$ prepared according to the literature procedure [14], and found to have the same chemical shifts and ${}^{1}J(PtP)$ coupling constants as reported [2591] and 3220 Hz for phosphines trans to S and SMe, respectively]. The second component gave a single ³¹P resonance $[\delta 17.3, {}^{1}J(PtP) 3101 \text{ Hz}]$ indicating a symmetrical structure. The complex cis-[Pt(SMe)₂(PPh₃)₂] can be ruled out on the basis of its reported ³¹P NMR data [δ 25.5, ¹J(PtP) 2862 Hz] [16], but it is possible that the product is the *trans* isomer of $[Pt(SMe)_2(PPh_3)_2]$. The neutral complex [Pt(SMe)₂(PPh₃)₂] would be expected to show a low ionisation efficiency in the ESI mass spectrum, however the mass spectrum of the crude product did show a very low intensity ion at m/z 766, assigned to [Pt(SMe)- $(PPh_3)_2^{\dagger}$, an ion that might be expected to be observed for such a complex.

The reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with Et₃PbOAc was also investigated by ESI MS, and found to parallel that of the methyl system, giving the species $[Pt_2(\mu-S)_2 (PPh_3)_4PbEt_3^{\dagger}$ at m/z 1797. However, conversion to the (previously unreported) ethylated derivative $[Pt_2(\mu-S) (\mu$ -SEt)(PPh₃)₄]⁺ at m/z 1532 occurred more rapidly. The relative reactivity of the methyl and ethyl systems was subsequently compared by the competitive reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with 0.5 molar equivalents of each of Me₃PbOAc and Et₃PbOAc in methanol. The starting materials quickly dissolved (<1 min) to produce a clear, bright vellow solution that contained equal amounts of [Pt2- $(\mu-S)_2(PPh_3)_4PbMe_3^{\dagger}$ and $[Pt_2(\mu-S)_2(PPh_3)_4PbEt_3^{\dagger}]^{\dagger}$ as the base peaks in the ESI mass spectrum. This was then followed by the slower conversion to the species [Pt2- $(\mu$ -S)(μ -SR)(PPh₃)₄]⁺, with the ethyl derivative being formed significantly more rapidly. Noteworthy in this reaction system was the observation of a (low intensity) species at m/z 1769, tentatively assigned to the mixed-alkyl species $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_2Et]^+$, though interestingly $[Pt_2(\mu-S)_2(PPh_3)_4PbMeEt_2]^+$ was not observed.

The observation of the alkylated species $[Pt_2(\mu-S)-(\mu-SR)(PPh_3)_4]^+$ (R = Me, Et) in reactions between $[Pt_2(\mu-S)_2(PPh_3)_4]$ and R₃PbOAc indicates that the R₃Pb⁺ group is acting as an alkylating agent. Heavy element organometallics have previously been reported to act as alkylating or arylating agents [17], including PbMe₄ [18] and trimethyllead species [19]. In contrast, prolonged reaction (>1 week) between $[Pt_2(\mu-S)_2(PPh_3)_4]$ and either Ph₃PbCl or Pb₂Ph₆ produced no phenylated derivative.

Diaryl-lead(IV) halide systems have also been investigated; the reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with Ph_2PbI_2 yielded an orange solution, containing predominantly $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]^+$ at m/z 1991 together with $[Pt_2-(\mu-S)_2(PPh_3)_4PbPh_2]^{2+}$ at m/z 932. The dicationic nature of the latter ion was confirmed by its isotope distribution pattern. In this system, the soft iodide anion has a tendency to remain coordinated to the soft lead(IV) centre. On precipitation of the product with excess NH₄PF₆, an orange solid was obtained which gave good elemental microanalytical data for the iodo complex $[Pt_2(\mu-S)_2(PPh_3)_4-$ PbPh₂I]PF₆ (3). The ${}^{31}P-{}^{1}H$ NMR spectrum showed a single sharp peak at δ 16.2, showing coupling to ¹⁹⁵Pt of 3068 Hz. However, the ESI MS spectrum (in methanol) of the isolated orange solid showed a roughly equal mixture of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]^+$ and $[Pt_2(\mu-S)_2(PPh_3)_4 PbPh_2$ ²⁺. It is feasible that in a polar solvent (such as methanol) some dissociation occurs due to the low concentration of iodide in the polar solvent. Consistent with this, addition of a small quantity of aqueous NaI solution to the methanol analyte solution resulted in complete conversion to the iodo complex $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]^+$. Recrystallisation of the iodo complex 3 by vapour diffusion of diethyl ether into a dichloromethane solution gave a homogenous sample of orange blocks of the complex suitable for an X-ray diffraction study, which confirmed its formulation, as described in the following section. Analysis of one crystal by ESI MS again showed the iodo complex as the base peak, but with $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2]^{2+}$ still observed (50% relative intensity).

In a similar manner, reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with Ph_2PbBr_2 gave a yellow solution which furnished the analogous bromo complex $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2Br]PF_6$ (4) on addition of NH_4PF_6 . This complex showed similar ³¹P NMR spectroscopic parameters to the iodo complex $[\delta \ 16.1, \ ^1J(PtP) \ 3087 \ Hz]$, and also showed analogous

behaviour in ESI MS analysis, giving both $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2Br]^+$ (*m/z* 1944) and $[Pt_2(\mu-S)_2(PPh_3)_4-PbPh_2]^{2+}$ (*m/z* 932). Likewise, reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with Ph_2PbBr₂ followed by addition of a large excess of KSCN yielded a yellow solid which analysed as the thiocyanato derivative $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2SCN]SCN$ (**5**) on the basis of ESI MS (product cation at *m/z* 1922), ³¹P-{¹H} NMR [δ 15.74, ¹*J*(PtP) 3091] and elemental analysis.

3. X-ray structure determinations on $[Pt_2(\mu-S)_2(PPh_3)_4-PbMe_3]PF_6$ (2) and $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]PF_6$ (3)

The structure of the cation of the trimethyllead derivative **2** is illustrated in Fig. 1. It consists of the usual $P_4Pt_2S_2$ core with the Me₃Pb⁺ group attached to one of the two S atoms. There is no significant interaction with the other S atom, as evidenced by the longer Pb–S distance [3.835(1) Å c.f. 2.611(1) Å for the bonded one] and by the symmetrical geometry around the Pb atom (C–Pb–C angles essentially equal at 115.0 ± 1.6°). For comparison, Me₃PbSMe has a Pb–S distance of 2.588 Å and C–Pb–C angles of 117 ± 2° [20]. The Pt–S distances to the lead-bonded S atom average 2.374 Å, while those to the two-coordinate S are 2.329 Å. It is noteworthy that in the ³¹P–{¹H} NMR spectrum of this complex, a single sharp resonance was observed at room temperature, suggesting that the complex is fluxional in solution, with the PbMe₃ group hopping between S centres.

Fig. 1. Structure of the cation of $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]PF_6$ (2), showing the atom labelling scheme. For clarity, only the *ipso* carbon atoms of the six PPh₃ ligands have been shown.

Upon cooling to 223 K, the spectrum remained essentially unchanged, suggesting a very facile exchange process.

In contrast, the structure of the Ph_2IPb^+ analogue **3** shown in Fig. 2 has the lead atom interacting with both S atoms, though not equally. The Pb–S(1) distance is short at 2.567(2) Å, while Pb–S(2) is 2.879(2) Å. This results in a five-coordinate Pb atom with pseudo trigonal bipyramidal coordination, the I and S(2) atoms occupying the axial positions [I–Pb–S(2) angle 156.6°]. A similar arrangement was also found for the corresponding Me₂ClSn⁺ and (PhCH₂)₂BrSn⁺ analogues [1]. Related systems are known in the literature, for example the complex [Ph₂Pb(dmit)] (H₂dmit = 4,5-dimercapto-1,3-dithiole-2-thione), which adds iodide to give [Ph₂Pb(dmit)I]⁻; the same product is formed from Ph₂PbI₂ and (Et₄N)₂[Zn(dmit)₂] [21].

The Pb–I distance of 2.9208 Å in **3** is longer than the equivalent in a four-coordinate R_3Pb –I compound (2.849 Å) [22] but is similar to a pseudo-five-coordinate equivalent with an intramolecular coordinated –NMe₂ group (2.956 Å) [23]. Presumably it would take little to remove the I atom and convert **3** into the dication $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2]^{2+}$ with a Ph₂Pb group symmetrically attached to both S atoms. This is consistent with the observation that the 'parent' $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]^+$ cation readily loses iodide in ESI MS analysis, giving $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2]^{2+}$.

One significant difference between **2** and **3** is the dihedral angle formed by the two P_2PtS_2 planes in each cation, 138.1° for **2** and 126.3° for **3**. There are approximately 70

examples of derivatives of $(Ph_3P)_4Pt_2S_2$ in the Cambridge Crystallographic Database (May 2006 version), most of these having the equivalent dihedral angle in the range 123–147° with a mean value of 134° (excluding the parent complex with an angle of 168° [24], and two unusual examples with two AuCl or AgCl groups attached to the S atoms, with angles of 180° [25]). However there does not seem to be any particular pattern to variations in this fold-angle in terms of the number or type of groups attached to the sulfur atom(s), so it appears it is a flexible parameter determined by intramolecular and crystal packing interactions and is not a consequence in **2** and **3** of differing Pb coordination.

4. Electrospray mass spectrometry study

A study of the cone voltage-induced fragmentation of the organolead(IV) adducts $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]^+$ and $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]^+$ has been carried out, in order to explore differences in fragmentation pathways imposed by the different organic groups. A number of studies have previously concerned the ESI MS analysis of organolead complexes. In an early study, the ESI MS behaviour of Me_3PbCl and Et_3PbCl were studied and yielded the parent $[R_3Pb]^+$ cations under low fragmentation conditions.[26] At a fragmentor voltage of 100 V, the most abundant fragment ions were formed by loss of R– R, while at 150 V, the bare lead cation $[Pb]^+$ was observed.

Fig. 2. Structure of the cation of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]PF_6$ (3), showing the atom labelling scheme. For clarity, only the *ipso* carbon atoms of the six PPh₃ ligands have been shown.

Similar results have been observed for Me₃PbOAc [5]. Aryllead(IV) carboxylates have also been studied [27] and ESI has been used in the 'bare metal' or 'elemental' mode, for the quantitative analysis of organolead compounds [28]. A study of diphenyl lead(IV) thiosemicarbazonate complexes found that fragmentation by loss of two phenyl groups occurred first, giving product ions in which the Pb–S bond is retained [29].

Positive-ion ESI mass spectra for $[Pt_2(\mu-S)_2(PPh_3)_4 PbPh_3PF_6$ (1a) in dichloromethane-methanol solution are shown in Fig. 3. At low cone voltages, e.g. up to 50 V (Fig. 3a), the parent ion $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]^+$ (m/z 1941) dominates. Increasing the cone voltage to 80 V begins to effect fragmentation, with an ion at m/z1679 being formed initially, and assigned to the species $[Pt_2(\mu-S)_2(PPh_3)_3PbPh_3]^+$, formed by dissociation of a PPh₃ ligand; at 100 V (Fig. 3b) this is the base peak. Formation of another ion at m/z 1317 is also observed, becoming the base peak at a cone voltage of 120 V (Fig. 3c). This ion is assigned as the phenylated species $[Pt_2(\mu-S)_2(PPh_3)_3]$ Ph^{\uparrow}, which may contain a µ-SPh group, and presumably formed by loss of neutral PbPh₂ from $[Pt_2(\mu-S)_2(PPh_3)_3-$ PbPh₃]⁺. The parent species $[Pt_2(\mu-S)_2(PPh_3)_4Ph]^+$, which is presumably $[Pt_2(\mu-S)(\mu-SPh)(PPh_3)_4]^+$, has been generated by reaction of $[Pt_2(\mu-S)_2(PPh_3)_4]$ with phenylating agents such as PhBr and [Ph2I]Cl [15]. Loss of isotopically-rich Pb has a noticeable effect in compressing the isotope envelope of the ion $[Pt_2(\mu-S)_2(PPh_3)_3Ph]^+$, compared to lead-containing ions. At 120 V, an ion at m/z 1055 is assigned to the species $[Pt_2(\mu-S)_2(PPh_3)_2Ph]^+$, formed by loss of an additional PPh₃ from $[Pt_2(\mu-S)_2(PPh_3)_3Ph]^+$, and at even higher voltages such as 140 V the base peak is an ion at m/z 977 is formed by elimination of PhH from $[Pt_2(\mu-S)_2(PPh_3)_2Ph]^+$.

Contrasting behaviour was observed in the fragmentation of the trimethylead ion $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]^+$ when analysed under comparable conditions; a series of spectra for 2 at increasing cone voltage are shown in Fig. 4. The ion $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]^+$ was the only major peak observed at low to moderate cone voltages (e.g. 50 V, Fig. 4a). In comparable behaviour to $[Pt_2(\mu-S)_2(PPh_3)_4]$ $PbPh_3^+$, at higher cone voltages (e.g. 90 V, Fig. 4b) the first fragment ion formed was $[Pt_2(\mu-S)_2(PPh_3)_3PbMe_3]^+$ at m/z1493, formed by simple loss of a PPh₃ ligand. At this cone voltage, an ion at m/z 1463 was also observed; this ion became the base peak at 120 V, Fig. 4c. The loss of 30 Da clearly indicates fragmentation by loss of ethane, and the ion at m/z 1463 is assigned to $[Pt_2(\mu-S)_2(PPh_3)_3PbMe]^+$. This is similar to the fragmentation process for $[Me_3Pb]^+$ itself [26], and analogous loss of ethane from cationic dimethyl derivatives of gold(III) and thallium(III) has been previously reported [30]. It is at this point that the fragmentation pathways of $[Pt_2(\mu-S)_2(PPh_3)_3PbMe_3]^+$ and $[Pt_2(\mu-S)_2(PPh_3)_3 PbPh_3$ ⁺ have clearly diverged. When the cone voltage is further increased to 140 V (Fig. 4d), the base peak now becomes an ion at m/z 1185. Examination of the high resolution isotope pattern shows that this ion has the formula $[Pt_2(\mu-S)_2(PPh_3)_2Pb-H]^+$, formed by loss of CH₄ and PPh₃ from $[Pt_2(\mu-S)_2(PPh_3)_3PbMe]^+$; this ion may contain a cyclometallated PPh₃ ligand.

Fig. 3. Positive-ion ESI mass spectra of the complex $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]PF_6$ (1a), at cone voltages of (a) 20 V, (b) 100 V and (c) 120 V.

Fig. 4. Positive-ion ESI mass spectra of the complex $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]PF_6$ (2), at cone voltages of (a) 50 V, (b) 90 V, (c) 120 V and (d) 140 V.

Interestingly, a single crystal of $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]$ -PF₆ (obtained by slow crystallisation from CH₂Cl₂-Et₂O) showed, in addition to the dominant parent ion at m/z1755, a low intensity ion at m/z 1503, assigned as $[Pt_2(\mu-S)_2-(PPh_3)_4H]^+$. A likely explanation of this is that the free sulfide centre can be protonated, destabilising the complex, resulting in the extrusion of Me₃Pb⁺ and formation of the protonated species $[Pt_2(\mu-S)_2(PPh_3)_4H]^+$. The monodentate nature of the $\{Pt_2S_2\}$ metalloligand towards the PbMe₃⁺ fragment could promotes such a process, compared to a bidentate system (as in the PbPh₂I⁺ derivative).

Exchange reactions have also been explored using ESI MS. Methanolic solutions of $[Pt_2(\mu-S)_2(PPh_3)_3PbMe_3]^+$ with added Ph₃PbCl, and of $[Pt_2(\mu-S)_2(PPh_3)_3PbPh_3]^+$ with added Me₃PbOAc were prepared, and analysed by ESI MS. In the former system complete exchange of the organolead groups occurred, yielding $[Pt_2(\mu-S)_2(PPh_3)_3PbPh_3]^+$, but no reaction was observed for the latter system.

5. Discussion

The metalloligand $[Pt_2(\mu-S)_2(PPh_3)_4]$ readily forms adducts with chemically soft lead(IV) species by displacement of halide ligands, analogous to the organo-tin(IV) systems [6]. The mode of binding of a PbR₃⁺ fragment to the {Pt₂S₂} metalloligand core appears to depend on the Lewis acidity of the lead moiety. A study of the variation in ¹*J*(PtP) coupling constants in a series of organo-tin(IV) adducts of [Pt₂S₂(PPh₃)₄] found that the stronger Lewis acids result in observation of higher ¹*J*(PtP) values, due to their electron-withdrawing effect strengthening the Pt–P bonds [6]. In this work, the values of ¹*J*(PtP) for the lead(IV) adducts [PbPh₂Br (3087 Hz) > PbPh₂I (3068 Hz) > PbPh₃ (3013 Hz) > PbMe₃ (2944 Hz)] follow the expected trend and confirm that the PbMe₃ group is the weakest Lewis acid. For the weaker Lewis acids PbMe₃⁺ and PbEt₃⁺ the electronic requirements of the lead atom are readily satisfied by coordination to a single sulfide donor, while for the stronger Lewis acid PbPh₂I⁺, both sulfides are coordinated (one more strongly than the other in the solid state), giving a five-coordinate lead centre.

It is noteworthy that alkylation reactions occur for [Pt₂- $(\mu$ -S)₂(PPh₃)₃PbMe₃]⁺, (through Pb–C bond cleavage) and more rapidly for $[Pt_2(\mu-S)_2(PPh_3)_3PbEt_3]^+$, but arylation does not occur at all for $[Pt_2(\mu-S)_2(PPh_3)_3PbPh_3]^+$ nor for $[Pt_2(\mu-S)_2(PPh_3)_3PbPh_2I]^+$. Although the structure of $PbPh_3^+$ adduct has not been determined, it would not be unreasonable to suggest that it has an analogous structure to the $PbPh_2I^+$ adduct, with a five-coordinate lead. Increased steric bulk at Pb and the lack of availability of a free sulfide could account for the lack of arylation reactivity in the PbPh₃ and Ph₂PbX (X = Br, I) systems. ESI MS observations indicate that Ph₃Pb⁺ forms a more stable solution adduct with the $\{Pt_2S_2\}$ metalloligand than does Me₃Pb⁺, consistent with stronger bonding to the more strongly Lewis acidic $PbPh_3^+$ fragment, which interacts with both sulfur donors.

A possible mechanism that accounts for the alkylation process is shown in Scheme 1, and involves intramolecular attack of the free sulfide group at a Pb–CH₂ carbon, resulting

in transfer of the alkyl group from Pb to S. Presumably, PbR_2 is generated in this process. Simple divalent organolead compounds are known to be unstable with respect to lead(IV) [31], and PbR₂ would not be expected to be detected in the ESI mass spectrum due to the anticipated lack of an ionisation pathway. To account for the greater reactivity in the ethyl system, it is possible that the lead centre would be more electron-rich than in the methyl case (due to the positive inductive effect of the additional Me groups), so that the Pb–S bond is further weakened, the $PbEt_3^+$ group is a poorer Lewis acid still, and alkyl transfer occurs more rapidly. The observation that a key mass spectrometric fragmentation of $[Pt_2(\mu-S)_2(PPh_3)_3PbMe_3]^+$ is via elimination of Me-Me, but analogous loss of Ph-Ph is not observed for $[Pt_2(\mu-S)_2(PPh_3)_3PbPh_3]^+$ is also consistent with the presence of weaker Pb-C(alkyl) bonds.

6. Experimental

General experimental procedures were as described in recent publications from these laboratories [1–4]. ESI mass spectra were recorded on a VG Platform II instrument in positive-ion mode, using methanol as the mobile phase. Reaction solution aliquots were diluted with methanol prior to analysis, while isolated salts were dissolved in several drops of CH₂Cl₂ before diluting with MeOH to give a total solid concentration of ca. 0.1 mg mL⁻¹. Confirmation of species was facilitated by comparison of observed and calculated isotope distribution patterns, the latter obtained from the *Isotope* program [32]. Reported m/z values are for the most intense peak in the isotope distribution envelope. Elemental analyses were obtained by the Campbell Microanalytical Laboratory at the University of Otago, Dunedin, New Zealand.

The compounds triphenyllead chloride (Aldrich), trimethyllead acetate (Aldrich), triethyllead acetate (Aldrich), tetraphenyllead (Aldrich), hexaphenyldilead (Aldrich), sodium tetraphenylborate (BDH), potassium thiocyanate (BDH), Li[N(SO₂C₂F₅)₂] (3M) and ammonium hexafluorophosphate (Aldrich) were used as received. The compound [Pt₂(μ -S)₂(PPh₃)₄] was prepared by the literature procedure [13]. Diphenyllead diiodide and diphenyllead dibromide were prepared by the dropwise addition of a chloroform solution of either iodine or bromine (2 mol equiv.) to a chloroform solution of Ph_4Pb . The product was isolated by reduction in the volume of the solution and addition of petroleum spirits, giving yellow (Ph_2PbI_2) or white (Ph_2PbBr_2) microcrystals.

7. Synthesis of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]PF_6$ (1a)

A suspension of $[Pt_2(\mu-S)_2(PPh_3)_4]$ (200 mg, 0.133 mmol) and Ph₃PbCl (71 mg, 0.150 mmol) in methanol (30 mL) was stirred at room temperature, resulting in the rapid formation of a clear, bright yellow solution. After stirring for 24 h, the solution was filtered to remove a trace of insoluble matter, and to the filtrate was added NH₄PF₆ (100 mg, 0.613 mmol), resulting in the formation of a yellow microcrystalline solid. After stirring for 10 min water (10 mL) was added to complete precipitation. The product was isolated by filtration, washed with water (10 mL) and dried under vacuum to give **1a** (198 mg, 71%) as a bright yellow solid. M.p. decomp. >300 °C. Anal. Calc. for C₉₀H₇₅F₆P₅-PbPt₂S₂: C, 51.8; H, 3.6. Found: C, 51.6; H, 3.6%. ³¹P-{¹H} NMR, δ 21.8 [s, ¹J(PtP) 3013]. ESI MS *m*/*z* 1941, [Pt₂(μ -S)₂(PPh₃)₄PbPh₃]⁺ (100%).

8. Synthesis of [Pt₂(µ-S)₂(PPh₃)₄PbPh₃]BPh₄ (1b)

Following the synthesis of **1a**, complex **1b** was prepared analogously, replacing NH_4PF_6 by $NaBPh_4$ (150 mg, 0.439 mmol), resulting in the immediate formation of a light yellow precipitate; no water was added in this case. Following filtration and washing with cold methanol, complex **1b** was obtained (201 mg, 67%). Anal. Calc. for $C_{114}H_{95}BP_4PbPt_2S_2$: C, 60.6; H, 4.2. Found: C, 60.3; H, 4.5%.

9. Synthesis of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]N(SO_2C_2F_5)_2$ (1c)

Following the general procedure for 4a, Complex 1c was isolated in 52% yield by addition of LiN(SO₂C₂F₅)₂ to the filtered reaction solution, and was obtained as small orange-yellow crystals. The presence of the cation and anion were confirmed by positive- and negative-ion [N(SO₂C₂F₅)₂⁻, m/z 380] ESI MS, respectively.

10. Synthesis of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]PF_6$ (1a) from Pb_2Ph_6

A suspension of $[Pt_2(\mu-S)_2(PPh_3)_4]$ (200 mg, 0.133 mmol) and Pb₂Ph₆ (59 mg, 0.067 mmol) in methanol (30 mL) was stirred at room temperature, giving a clear, bright yellow solution after several hours. ESI MS showed predominantly the $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_3]^+$ cation. After stirring for 36 h, the solution was filtered, and NH₄PF₆ (100 mg, 0.613 excess) added to the stirred filtrate, giving a yellow precipitate. After addition of water (30 mL), the product was filtered off, washed with water (10 mL), and dried under vacuum to give **1a** (215 mg, 77%), which was spectroscopically identical to the sample of **1a** prepared from Ph₃PbCl.

11. Synthesis of $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]PF_6$ (2)

Following the general method for **1a** (from Ph₃PbCl), a suspension of $[Pt_2(\mu-S)_2(PPh_3)_4]$ (200 mg, 0.133 mmol) with Me₃PbOAc (73 mg, 0.234 mmol) in methanol (30 mL) was stirred at room temperature, rapidly giving a bright yellow solution which was stirred for 1.5 h. Filtration, followed by addition of NH₄PF₆ (100 mg, 0.613 mmol) to the filtrate gave a bright yellow microcrystalline solid (199 mg, 79%). Anal. Calc. for C₇₅H₆₉F₆P₅PbPt₂S₂: C, 47.4; H, 3.7. Found: C, 47.6; H, 3.8%. ESI MS *m/z* 1755, $[Pt_2(\mu-S)_2(PPh_3)_4$ -PbMe₃]⁺ (100%). ³¹P-{¹H} NMR, δ 23.2 [s, ¹*J*(PtP) 2944]. ¹H NMR, 1.16 [s, Pb-Me, ²*J*(²⁰⁷PbH) 61.5] and 7.35-7.05 (m, Ph). Recrystallisation by vapour diffusion of diethyl ether into a dichloromethane solution gave bright yellow blocks.

When this reaction was repeated using a longer reaction time (>24 h), ESI MS of the isolated product, which had a slightly oily consistency, showed the presence of a substantial quantity of $[Pt_2(\mu-S)(\mu-SMe)(PPh_3)_4]^+$ at m/z 1518.

12. Synthesis of crude $[Pt_2(\mu\text{-}S)(\mu\text{-}SMe)(PPh_3)_4]PF_6$ using Me_3PbOAc

A mixture of $[Pt_2(\mu-S)_2(PPh_3)_4]$ (100 mg, 0.067 mmol) with Me₃PbOAc (36 mg, 0.116 mmol) in methanol (30 mL) was stirred, while being monitored periodically by positiveion ESI MS. After 9 days, the dominant species observed was $[Pt_2(\mu-S)(\mu-SMe)(PPh_3)_4]^+$ at m/z 1518. The resulting light yellow solution was filtered to remove a trace of insoluble matter, and to the filtrate was added NH₄PF₆ (150 mg, 0.920 mmol), giving a light yellow precipitate. Water (10 mL) was added to assist precipitation, and the solid was filtered off, washed with 10 mL water, and dried under vacuum to give crude $[Pt_2(\mu-S)(\mu-SMe)(PPh_3)_4]PF_6$ (62 mg).

13. Synthesis of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]PF_6$ (3)

A suspension of $[Pt_2(\mu-S)_2(PPh_3)_4]$ (200 mg, 0.133 mmol) and Ph_2PbI_2 (110 mg, 0.179 mmol) in methanol (30 mL) was stirred at room temperature, giving a clear orange solution after *ca.* 10 min. A positive-ion ESI mass spectrum showed $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]^+$ as the dominant species. After filtration, solid NH₄PF₆ (200 mg, 1.227 mmol) was added to the filtrate, giving an orange solid, which was filtered off, washed with water, and dried to give **3** (198 mg, 70%). Anal. Calc. for C₈₄H₇₀F₆IP₅PbPt₂S₂: C, 47.2; H, 3.3. Found: C, 47.2; H, 3.5%. A positive-ion ESI mass spectrum in methanol showed a mixture of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]^+$ (*m*/*z* 1991) and $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2]^{2+}$ (*m*/*z* 932). ³¹P–{¹H} NMR, δ 16.23 [s, ¹*J*(PtP) 3068]. Recrystallisation by vapour diffusion of diethyl ether into a dichloromethane solution of the complex yielded bright orange crystals of **3**, shown by the X-ray structure determination to be the '3CH₂Cl₂ solvate. These lose solvent upon standing in air when removed from the mother liquor.

14. Synthesis of [Pt₂(µ-S)₂(PPh₃)₄PbPh₂Br]PF₆ (4)

[Pt₂(μ-S)₂(PPh₃)₄] (200 mg, 0.133 mmol) and Ph₂PbBr₂ (75 mg, 0.144 mmol) in methanol (30 mL) was stirred at room temperature for 40 min., giving a clear yellow-orange solution. After filtration, solid NH₄PF₆ (200 mg, 1.227 mmol) was added to the filtrate, giving a yellow-orange precipitate, which was filtered, washed with water, and dried to give **4** (195 mg, 70%). Anal. Calc. for C₈₄H₇₀BrF₆-P₅PbPt₂S₂: C, 48.3; H, 3.4. Found: C, 48.1; H, 3.3%. ESI MS: [Pt₂(μ-S)₂(PPh₃)₄PbPh₂Br]⁺ (*m*/*z* 1944, 70%) and [Pt₂(μ-S)₂(PPh₃)₄PbPh₂]²⁺ (*m*/*z* 932, 100%).³¹P-{¹H} NMR, δ 16.14 [s, ¹*J*(PtP) 3087].

15. Synthesis of [Pt₂(µ-S)₂(PPh₃)₄PbPh₂(SCN)]SCN (5)

[Pt₂(μ-S)₂(PPh₃)₄] (281 mg, 0.187 mmol) and Ph₂PbBr₂ (113 mg, 0.218 mmol) in methanol (30 mL) was stirred at room temperature for 1 h. To the resulting clear yelloworange solution was added KSCN (500 mg, large excess), resulting in the rapid deposition of a yellow precipitate. The mixture was stirred for 22 h, and the yellow product filtered, washed with water (2 × 10 mL) and dried under vacuum to give **5** (310 mg, 84%). Anal. Calc. for C₈₆H₇₀N₂-P₄PbPt₂S₄: C, 52.1; H, 3.6; N, 1.4. Found: C, 51.1; H, 3.4; N, 1.4%. ³¹P-{¹H} NMR, δ 15.73 [s, ¹J(PtP) 3091].

16. X-ray crystallography

X-ray intensity data were collected on a Bruker CCD diffractometer using standard procedures and software. Empirical absorption corrections were applied (SADABS [33]). Structures were solved by direct methods and developed and refined on F_o^2 using the SHELX programmes [34] operating under WINGX [35]. Hydrogen atoms were included in calculated positions.

17. Structure of $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]PF_6$ (2)

Yellow prismatic crystals were obtained from $CH_2Cl_2/$ Et₂O.

Table 1 Selected bond parameters for $[Pt_2(\mu-S)_2(PPh_3)_4PbMe_3]PF_6$ (2) and $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]PF_6$ (3)

	(2)	(3)
Bond lengths (Å)		
Pt(1)–S(1)	2.323(1)	2.374(2)
Pt(1)–S(2)	2.377(1)	2.351(2)
Pt(2)–S(1)	2.335(1)	2.371(2)
Pt(2)–S(2)	2.372(1)	2.362(2)
Pt–P (av)	2.292(1)	2.299(2)
Pb(1)–S(1)	3.835(1)	2.567(2)
Pb(1)–S(2)	2.611(1)	2.879(2)
Pb(1)–I(1)		2.9208(6)
Pb(1)–C(1)	2.203(3)	2.217(8)
Pb(1)–C(2)	2.209(3)	2.222(8)
Pb(1)–C(3)	2.210(3)	
Angles (°)		
P(1)-Pt(1)-P(2)	100.69(2)	97.44(7)
P(3)-Pt(2)-P(4)	103.17(2)	102.43(7)
Pt(1)-S(1)-Pt(2)	93.35(2)	86.23(6)
Pt(1)-S(2)-Pt(2)	91.06(2)	86.95(6)
Pt(1)-S(2)-Pb(1)	101.38(2)	83.42(5)
Pt(2)-S(2)-Pb(1)	99.84(2)	81.81(5)
Pt(1)-S(1)-Pb(1)		90.21(5)
Pt(2)-S(1)-Pb(1)		88.68(5)
C(1)-Pb(1)-C(2)	113.3(1)	114.4(3)
C(1)-Pb(1)-C(3)	114.3(1)	
C(2)–Pb(1)–C(3)	116.6(1)	
C(1)-Pb(1)-I(1)		96.5(2)
C(2)-Pb(1)-I(1)		99.6(2)
S(1)–Pb(1)–I(1)		89.32(4)
S(2)-Pb(1)-I(1)		156.60(4)
Dihedral angle (°)		
$P_2Pt(1)S_2/P_2Pt(2)S_2$	138.1	126.3

Crystal data: C₇₅H₆₉F₆P₅PbPt₂S₂, M = 1900.64, triclinic, space group $P\bar{1}$, a = 13.6472(4) Å, b = 14.4319(4) Å, c = 19.3433(5) Å, $\alpha = 87.624(1)^{\circ}$, $\beta = 80.817(1)^{\circ}$, $\gamma = 67.297(1)^{\circ}$, U 3468.7(2) Å³, T 84(2) K, Z = 2, $D_{calc} = 1.820$ g cm⁻³, μ (Mo K α) = 6.679 mm⁻¹, F(000) 1836; 33905 reflections collected with $2^{\circ} < \theta < 26^{\circ}$, 14132 unique (R_{int} 0.0188) used after correction for absorption ($T_{max, min}$ 0.281, 0.189). Crystal dimensions $0.32 \times 0.28 \times 0.24$ mm³.

Refinement on F_0^2 converged at R_1 0.0172 $[I > 2\sigma(I)]$ and wR_2 0.0394 (all data), GoF 1.018. The structure of **2** is illustrated in Fig. 1, with selected bond parameters summarised in Table 1.

18. Structure of $[Pt_2(\mu-S)_2(PPh_3)_4PbPh_2I]PF_6 \cdot 3CH_2Cl_2$ (3 · 3CH₂Cl₂)

Orange prismatic crystals were obtained from CH_2Cl_2/Et_2O .

Crystal data: $C_{87}H_{76}Cl_6F_6IP_5PbPt_2S_2$, M = 2391.42, triclinic, space group $P\bar{1}$, a = 12.7720(3) Å, b = 17.5564(4) Å, c = 19.5371(4) Å, $\alpha = 77.132(1)^\circ$, $\beta = 84.108(1)^\circ$, $\gamma = 86.387(1)^\circ$, U 4244.6(2) Å³, T 84(2) K, Z = 2, $D_{calc} = 1.871$ g cm⁻³, μ (Mo K α) = 6.02 mm⁻¹, F(000) 2304; 41036 reflections collected with $2^\circ < \theta < 26^\circ$, 17189 unique

Refinement on F_0^2 converged at R_1 0.0466 $[I > 2\sigma(I)]$ and wR_2 0.1198 (all data), GoF 1.026. The atoms of the three solvent molecules showed relatively high U_{iso} values suggesting they were not firmly held in the lattice, and residual Δe peaks of <5 e Å³ near the I atom suggested that this also was not completely ordered. The structure of **3** is illustrated in Fig. 2, with selected bond parameters summarised in Table 1.

Acknowledgements

We thank the University of Waikato and the National University of Singapore (NUS) for support of this work. We also thank Kelly Kilpin for recording the NMR spectra, and Dr. Tania Groutso (University of Auckland) for collection of the X-ray data sets of **2** and **3**.

Appendix A. Supplementary material

CCDC 645598 and 645599 contain the supplementary crystallographic data for **2** and **3**. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/ conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2007.07.010.

References

- [1] S.M. Devoy, W. Henderson, B.K. Nicholson, J. Fawcett, T.S.A. Hor, Dalton (2005) 2780.
- [2] J.H. Bridson, W. Henderson, B.K. Nicholson, T.S.A. Hor, Inorg. Chim. Acta 359 (2006) 680.
- [3] S.-W.A. Fong, T.S.A. Hor, S.M. Devoy, B.A. Waugh, B.K. Nicholson, W. Henderson, Inorg. Chim. Acta 357 (2004) 2081.
- [4] S.-W.A. Fong, T.S.A. Hor, J.J. Vittal, W. Henderson, S. Cramp, Inorg. Chim. Acta 357 (2004) 1152.
- [5] W. Henderson, J.S. McIndoe, Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds – Tools–Techniques– Tips, John Wiley & Sons, 2005.
- [6] S.-W.A. Fong, W.T. Yap, J.J. Vittal, T.S.A. Hor, W. Henderson, A.G. Oliver, C.E.F. Rickard, J. Chem. Soc., Dalton Trans. (2001) 1986.
- [7] J.S.L. Yeo, J.J. Vittal, W. Henderson, T.S.A. Hor, J. Chem. Soc., Dalton Trans. (2001) 315.
- [8] M. Zhou, Y. Xu, C.F. Lam, L.L. Koh, K.F. Mok, P.H. Leung, T.S.A. Hor, Inorg. Chem. 32 (1993) 4660.
- [9] M. Zhou, Y. Xu, A.-M. Tan, P.-H. Leung, K.F. Mok, L.L. Koh, T.S.A. Hor, Inorg. Chem. 34 (1995) 6425.
- [10] A.L. Tan, M.L. Chiew, T.S.A. Hor, Theochem 393 (1997) 189.
- [11] F. Mirzaei, L.-B. Han, M. Tanaka, Chem. Commun. (2000) 657; L.C. Willemsens, G.J.M. Van Der Kirk, J. Organomet. Chem. 15 (1968) 117.
- [12] G.D. Shier, R.S. Drago, J. Organomet. Chem. 6 (1966) 359.
- [13] R. Ugo, G. La Monica, S. Cenini, A. Segre, F. Conti, J. Chem. Soc. A (1971) 522.
- [14] C.E. Briant, C.J. Gardner, T.S.A. Hor, N.D. Howells, D.M.P. Mingos, J. Chem. Soc., Dalton Trans. (1984) 2645.

- [15] W. Henderson, S.H. Chong, T.S.A. Hor, Inorg. Chim. Acta 359 (2006) 3440.
- [16] C.E. Briant, G.R. Hughes, P.C. Minshall, D.M.P. Mingos, J. Organomet. Chem. 202 (1980) C18.
- [17] O. Schuster, A. Schier, H. Schmidbaur, Organometallics 22 (2003) 4079.
- [18] A.K. Holliday, G.N. Jessop, J. Chem. Soc. A (1967) 889.
- [19] F. Reinholdsson, C. Briche, H. Emteborg, D.C. Baxter, W. Frech, CANAS'95 Colloquium Analytische Atomspektroskopie, 1996, CAN 126, 176497.
- [20] C. Pulham, I. Maley, S. Parsons, D. Messenger, Private Communication, 2005, Cambridge Crystallographic Database CCDC 276843.
- [21] S.M.S.V. Doidge-Harrison, J.T.S. Irvine, G.M. Spencer, J.L. Wardell, P. Ganis, G. Valle, G. Tagliavini, Polyhedron 15 (1996) 1807.
- [22] G.L. Wegner, R.J.F. Berger, A. Schier, H. Schmidbaur, Z. Naturforsch. B55 (2000) 995.
- [23] H.O. van der Kooi, W.H. den Brinker, A.J. de Kok, Acta Crystallogr., Sect. C 41 (1985) 869.
- [24] H. Li, G.B. Carpenter, D. A Sweigart, Organometallics 19 (2000) 1823.
- [25] W. Bos, J.J. Bour, P.P.J. Schlebos, P. Hageman, W.P. Bosman, J.M.M. Smits, J.A.C. van Wietmarschen, P.T. Beurskens, Inorg. Chim. Acta 119 (1986) 141;

H. Liu, A.L. Tan, C.R. Cheng, K.F. Mok, T.S.A. Hor, Inorg. Chem. 36 (1997) 2916.

- [26] Z. Mester, J. Pawliszyn, Rapid Commun. Mass Spectrom. 13 (1999) 1999.
- [27] R.T. Aplin, J.E.H. Buston, M.G. Moloney, J. Organomet. Chem. 645 (2002) 176.
- [28] G. Zoorob, F.B. Brown, J. Caruso, J. Analyt. Atom. Spectrom. 12 (1997) 517.
- [29] J.S. Casas, M.S. Garcia-Tasende, J. Sordo, C. Taboada, M. Tubaro, P. Traldi, M.J. Vidarte, Rapid Commun. Mass Spectrom. 18 (2004) 1856.
- [30] A.J. Canty, R. Colton, I.M. Thomas, J. Organomet. Chem. 455 (1993) 283.
- [31] I. Ahmad, Y.K. Chau, P.T. Wong, A.J. Carty, L. Taylor, Nature 287 (1980) 716.
- [32] L.J. Arnold, J. Chem. Educ. 69 (1992) 811.
- [33] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
- [34] G.M. Sheldrick, SHELX97 Programs for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [35] L.J. Farrugia, WINGX, Version 1.70.01, University of Glasgow, UK;

L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837.